
Convolutional codes simulation using Matlab

EUGEN PETAC

Ovidius University of Constantza,

ROMANIA

ABDEL-RAHMAN ALZOUBAIDI

Mutah University

JORDAN

Abstract: In order to reduce the effects of random and burst errors in transmitted signal it is necessary to use

error-control coding. We researched some possibilities of such coding using the MATLAB Communications

Toolbox. There are two types of codes available Linear Block Codes and Convolutional Codes. In block

coding the coding algorithm transforms each piece (block) of information into a code word part of which is

a generated structured redundancy. Convolutional code uses an extra parameter (memory). This puts an

extra constraint on the code. Convolutional codes operate on serial data, one or a few bits at a time. This

paper describes basic aspects of Convolutional codes and illustrates Matlab encoding and decoding

implementations. Convolutional codes are often used to improve the performance of radio and satellite

links.

Key words: - Convolutional codes, error-control coding, radio and satellite links.

1. Introduction
Convolutional codes are commonly

specified by three parameters (n,k,m): n = number

of output bits; k = number of input bits; m =

number of memory registers. The quantity k/n

called the code rate, is a measure of the efficiency

of the code. Commonly k and n parameters range

from 1 to 8, m from 2 to 10 and the code rate from

1/8 to 7/8 except for deep space applications

where code rates as low as 1/100 or even longer

have been employed.

Often the manufacturers of convolutional

code chips specify [1] the code by parameters

(n,k,L), The quantity L is called the constraint

length of the code and is defined by Constraint

Length, L = k (m-1). The constraint length L

represents the number of bits in the encoder

memory that affect the generation of the n output

bits. The constraint length L is also referred to by

the capital letter K, which can be confusing with

the lower case k, which represents the number of

input bits. In some books K is defined as equal to

product the of k and m. Often in commercial

spec, the codes are specified by (r, K), where r =

the code rate k/n and K is the constraint length.

The constraint length K however is equal to L – 1,

as defined in this paper.

Even though a convolutional coder accepts a

fixed number of message symbols and produces a

fixed number of code symbols, its computations

depend not only on the current set of input

symbols but on some of the previous input

symbols.

In general, a rate R=k/n, k  n, convolutional

encoder input (information sequence) is a

sequence of binary k-tuples, u = ..,u–1, u0, u1,

u2,…, where)...()()1(k

iii uuu  . The output (code

sequence) is a sequence of binary n-tuples, v =

..,v–1, v0, v1, v2,…, where)...()()1(n

iii vvv  . The

sequences must start at a finite (positive or

negative) time and may or may not end.

The relation between the information

sequences and the code sequences is determined

by the equation

v = uG ,

where























............

...

...

...

10

10

10

m

m

m

GGG

GGG

GGG

G

is the semi-infinite generator matrix, and where

the sub-matrices G i , 0 i m, are binary kXn

matrices. The arithmetic in v = uG is carried out

over the binary field, F 2 , and the parts left blank

in the generator matrix G are assumed to be filled

in with zeros. The right hand side of v= uG

defines a discrete-time convolution between u and

)...(10 mGGGg  , hence, the name convolutional

codes [2].

As in many other situations where

convolutions appear it is convenient to express the

sequences in some sort of transform. In

information theory and coding theory [3], [4] it is

common to use the delay operator D, the D-

transform. The information and code sequences

becomes

........)(2

210

1

1  

 DuDuuDuDu

and

........)(2

210

1

1  

 DvDvvDvDv

They are related through the equation

)()()(DGDuDv  ,

where
m

mDGDGGDG  ...)(10

is the generator matrix.

The set of polynomial matrices is a special

case of the rational generator matrices. Hence,

instead of having finite impulse response in the

encoder, as for the polynomial case, we can allow

periodically repeating infinite impulse responses.

To make the formal definitions for this case it is

easier to start in the D-domain.

Let F 2((D)) denote the field of binary

Laurent series. The element







ri

i

i ZrDFDxDx ,)),(()(2

contains at most finitely many negative

powers of D. similarly, let F 2[D] denote the ring

of binary polynomials.

A polynomial





t

i

i

i ZtDFDxDx
0

2 ,],[)(

contains no negative powers of D and only

finitely many positive.

Given a pair of polynomials x(D), y(D) F

2[D], where y(D)0, we can obtain the element

x(D)/y(D) F 2((D)) by long division. All non-

zero ratios x(D)/y(D) are invertible, so they form

the field of binary rational functions, F 2(D),

which is a sub-field of F 2((D)).

A rate R = k/n (binary) convolutional

transducer over the field of rational functions F

2(D) is a linear mapping

))(())((: 22 DFDF nk 

)()(DvDu 

which can be represented as

v(D)=u(D)G(D),

where G(D) is a k X n transfer function

matrix of rank k with entries in F 2(D) and v(D) is

called the code sequence corresponding to the

information sequence u(D).

A rate R = k/n convolutional code C over F 2

is the image set of a rate R = k/n convolutional

transducer. We will only consider realizable

(causal) transfer function matrices, which we call

generator matrices. A transfer function matrix of a

convolutional code is called a generator matrix if

it is realizable (causal).

It follows from the definitions that a rate R =

k/n convolutional code C with the k X n generator

matrix G(D) is the row space of G(D) over

F((D)). Hence, it is the set of all code sequences

generated by the convolutional generator matrix,

G(D).

A rate R = k/n convolutional encoder of a

convolutional code with rate R = k/n generator

matrix G(D) over F 2(D) is a realization by linear

sequential circuits of G(D).

2. Convolutional encoder simulation
The Convolutional Encoder block encodes a

sequence of binary input vectors to produce a

sequence of binary output vectors. This block can

process multiple symbols at a time. If the encoder

takes k input bit streams (that is, can receive 2
k

possible input symbols), then this block's input

vector length is L*k for some positive integer L.

Similarly, if the encoder produces n output bit

streams (that is, can produce 2
n
 possible output

symbols), then this block's output vector length is

L*n. The input can be a sample-based vector with

L = 1, or a frame-based column vector with any

positive integer for L. For a variable in the

MATLAB workspace [5], [6] that contains the

trellis structure, we put its name as the Trellis

structure parameter. This way is preferable

because it causes Simulink [5] to spend less time

updating the diagram at the beginning of each

simulation, compared to the usage in the next

bulleted item. For specify the encoder using its

constraint length, generator polynomials, and

possibly feedback connection polynomials, we

used a poly2trellis command within the Trellis

structure field. For example, for an encoder with

a constraint length of 7, code generator

polynomials of 171 and 133 (in octal numbers),

and a feedback connection of 171 (in octal), we

have used the Trellis structure parameter to

poly2trellis(7,[171 133],171).

The encoder registers begin in the all-zeros

state. We configured the encoder so that it resets

its registers to the all-zeros state during the course

of the simulation: The value None indicates that

the encoder never resets; The value On each

frame indicates that the encoder resets at the

beginning of each frame, before processing the

next frame of input data; The value On nonzero

Rst input causes the block to have a second input

port, labeled Rst. The signal at the Rst port is a

scalar signal. When it is nonzero, the encoder

resets before processing the data at the first input

port.

3. Convolutional decoder simulation
3.1. Viterbi Decoder

 The Viterbi Decoder block [7], [1]

decodes input symbols to produce binary output

symbols. This block can process several symbols

at a time for faster performance. If the

convolutional code uses an alphabet of 2
n
 possible

symbols, then this block's input vector length is

L*n for some positive integer L. Similarly, if the

decoded data uses an alphabet of 2
k
 possible

output symbols, then this block's output vector

length is L*k. The integer L is the number of

frames that the block processes in each step. The

input can be either a sample-based vector with

L = 1, or a frame-based column vector with any

positive integer for L.

The entries of the input vector are either

bipolar, binary, or integer data, depending on the

Decision type parameter: Unquantized - Real

numbers; Hard Decision - 0, 1; Soft Decision -

Integers between 0 and 2
k
-1, where k is the

Number of soft decision bits parameter, with 0

for most confident decision for logical zero and

2
k
-1, most confident decision for logical one.

Other values represent less confident decisions.

If the input signal is frame-based, then the

block has three possible methods for transitioning

between successive frames. The Operation mode

parameter controls which method the block uses:

In Continuous mode, the block saves its internal

state metric at the end of each frame, for use with

the next frame. Each traceback path is treated

independently. In Truncated mode, the block

treats each frame independently. The traceback

path starts at the state with the best metric and

always ends in the all-zeros state. This mode is

appropriate when the corresponding

Convolutional Encoder block has its Reset

parameter set to On each frame. In Terminated

mode, the block treats each frame independently,

and the traceback path always starts and ends in

the all-zeros state. This mode is appropriate when

the uncoded message signal (that is, the input to

the corresponding Convolutional Encoder block)

has enough zeros at the end of each frame to fill

all memory registers of the encoder. If the encoder

has k input streams and constraint length vector

constr (using the polynomial description), then

"enough" means k*max(constr-1). In the special

case when the frame-based input signal contains

only one symbol, the Continuous mode is most

appropriate.

The Traceback depth parameter, D,

influences the decoding delay. The decoding

delay is the number of zero symbols that precede

the first decoded symbol in the output. If the input

signal is sample-based, then the decoding delay

consists of D zero symbols. If the input signal is

frame-based and the Operation mode parameter

is set to Continuous, then the decoding delay

consists of D zero symbols. If the Operation

mode parameter is set to Truncated or

Terminated, then there is no output delay and the

Traceback depth parameter must be less than or

equal to the number of symbols in each frame. If

the code rate is 1/2, then a typical Traceback

depth value is about five times the constraint

length of the code.

The reset port is usable only when the

Operation mode parameter is set to Continuous.

Checking the Reset input check box causes the

block to have an additional input port, labeled Rst.

When the Rst input is nonzero, the decoder returns

to its initial state by configuring its internal

memory as follows: Sets the all-zeros state metric

to zero; Sets all other state metrics to the

maximum value; Sets the traceback memory to

zero; Using a reset port on this block is analogous

to setting the Reset parameter in the

Convolutional Encoder block to On nonzero Rst

input.

3.2. APP Decoder

The APP Decoder block [8] performs a

posteriori probability (APP) decoding of a

convolutional code. The input L(u) represents the

sequence of log-likelihoods of encoder input bits,

while the input L(c) represents the sequence of

log-likelihoods of code bits. The outputs L(u) and

L(c) are updated versions of these sequences,

based on information about the encoder. If the

convolutional code uses an alphabet of 2
n
 possible

symbols, then this block's L(c) vectors have length

Q*n for some positive integer Q. Similarly, if the

decoded data uses an alphabet of 2
k
 possible

output symbols, then this block's L(u) vectors

have length Q*k. The integer Q is the number of

frames that the block processes in each step.

The inputs can be either: Sample-based

vectors having the same dimension and

orientation, with Q = 1; Frame-based column

vectors with any positive integer for Q.

To define the convolutional encoder that

produced the coded input, we have used the

Trellis structure MATLAB parameter. We tested

two ways: The name as the Trellis structure

parameter, for a variable in the MATLAB

workspace that contains the trellis structure. This

way is preferable because it causes Simulink to

spend less time updating the diagram at the

beginning of each simulation, compared to the

usage in the next bulleted item; For specify the

encoder using its constraint length, generator

polynomials, and possibly feedback connection

polynomials, we used a poly2trellis command

within the Trellis structure field. For example,

for an encoder with a constraint length of 7, code

generator polynomials of 171 and 133 (in octal

numbers), and a feedback connection of 171 (in

octal), we used the Trellis structure parameter to

poly2trellis(7,[171 133],171.

To indicate how the encoder treats the trellis

at the beginning and end of each frame, it’s

necessary to set the Termination method

parameter to either Truncated or Terminated.

The Truncated option indicates that the encoder

resets to the all-zeros state at the beginning of

each frame, while the Terminated option

indicates that the encoder forces the trellis to end

each frame in the all-zeros state.

We can control part of the decoding

algorithm using the Algorithm parameter. The

True APP option implements a posteriori

probability. To gain speed, both the Max* and

Max options approximate expressions by other

quantities. The Max option uses max{ai} as the

approximation, while the Max* option uses

max{ai} plus a correction term. The Max* option

enables the Scaling bits parameter in the mask.

This parameter is the number of bits by which the

block scales the data it processes internally. We

have used this parameter to avoid losing precision

during the computations. It is especially

appropriate for implementation uses fixed-point

components.

4. Conclusions
In these work we have constructed and

tested in Maple convolutional encoders and

decoders of various types, rates, and memories.

Convolutional codes are fundamentally different

from other classes of codes, in that a continuous

sequence of message bits is mapped into a

continuous sequence of encoder output bits. It is

well-known in the literature and practice that

these codes achieve a larger coding gain than that

with block coding with the same complexity. The

encoder operating at a rate 1/n bits/symbol, may

be viewed as a finite-state machine that consists

of an M-stage shift register with prescribed

connections to n modulo-2 adders, and a

multiplexer that serializes the outputs of the

adders.

References:

[1] Viterbi, Andrew J. "An Intuitive Justification

and a Simplified Implementation of the MAP

Decoder for Convolutional Codes." IEEE

Journal on Selected Areas in

Communications, vol. 16, February 1998. 260-

264.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and

Stephen B. Weinstein. Data Communications

Principles. New York: Plenum, 1992.

[3] Clark, George C. Jr. and J. Bibb Cain. Error-

Correction Coding for Digital

Communications. New York: Plenum Press,

1981.

[4] Pless,V., Introduction to the Theory of Error-

Correcting Codes, 3rd ed. New York: John

Wiley & Sons, 1998.

[5] Matlab Documentation,

http://www.math.niu.edu/help/math/matlab/

[6] Matlab Online Reference Documentation,

http://www.utexas.edu/math/Matlab/Manual/R

eferenceTOC.html

[7] Heller, Jerrold A. and Irwin Mark Jacobs.

"Viterbi Decoding for Satellite and Space

Communication." IEEE Transactions on

Communication Technology, vol. COM-19,

October 1971. 835-848.

[8] Höst S., Johannesson R., Zyablov V. V., and

Skopintsev O. “Generator matrices for binary

woven convolutional codes”, Proceedings of

6th Intern. Workshop on Algebraic and Comb.

Coding Theory, pages 142_146, Pskov,

Russia, Sept. 6_12 1998.

