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Abstract: In order to reduce the effects of random and burst errors in transmitted signal it is necessary to use 

error-control coding. We researched some possibilities of such coding using the MATLAB Communications 

Toolbox. There are two types of codes available Linear Block Codes and Convolutional Codes. In block 

coding the coding algorithm transforms each piece (block) of information into a code word part of which is 

a generated structured redundancy. Convolutional code uses an extra parameter (memory). This puts an 

extra constraint on the code. Convolutional codes operate on serial data, one or a few bits at a time. This 

paper describes basic aspects of Convolutional codes and illustrates Matlab encoding and decoding 

implementations. Convolutional codes are often used to improve the performance of radio and satellite 

links. 
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1. Introduction 
Convolutional codes are commonly 

specified by three parameters (n,k,m): n = number 

of output bits; k = number of input bits; m = 

number of memory registers. The quantity k/n 

called the code rate, is a measure of the efficiency 

of the code. Commonly k and n parameters range 

from 1 to 8, m from 2 to 10 and the code rate from 

1/8 to 7/8 except for deep space applications 

where code rates as low as 1/100 or even longer 

have been employed.  

Often the manufacturers of convolutional 

code chips specify [1] the code by parameters 

(n,k,L), The quantity L is called the constraint 

length of the code and is defined by  Constraint 

Length, L = k (m-1). The constraint length L 

represents the number of bits in the encoder 

memory that affect the generation of the n output 

bits. The constraint length L is also referred to by 

the capital letter K, which can be confusing with 

the lower case k, which represents the number of 

input bits. In some books K is defined as equal to 

product the of  k and m. Often in commercial 

spec, the codes are specified by (r, K), where r = 

the code rate k/n and K is the constraint length. 

The constraint length K however is equal to L – 1, 

as defined in this paper. 

Even though a convolutional coder accepts a 

fixed number of message symbols and produces a  

 

 

 

fixed number of code symbols, its computations 

depend not only on the current set of input 

symbols but on some of the previous input 

symbols. 

In general, a rate R=k/n, k  n, convolutional 

encoder input (information sequence) is a 

sequence of binary k-tuples, u = ..,u–1, u0, u1, 

u2,…, where )...( )()1( k

iii uuu   . The output (code 

sequence) is a sequence of binary n-tuples, v = 

..,v–1, v0, v1, v2,…, where )...( )()1( n

iii vvv  . The 

sequences must start at a finite (positive or 

negative) time and may or may not end.  

The relation between the information 

sequences and the code sequences is determined 

by the equation   

v = uG , 

 

where 
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is the semi-infinite generator matrix, and where 

the sub-matrices G i , 0 i m, are binary kXn 

matrices. The arithmetic in v = uG is carried out 

over the binary field, F 2 , and the parts left blank 

in the generator matrix G are assumed to be filled 

in with zeros. The right hand side of v= uG 

defines a discrete-time convolution between u and 



)...( 10 mGGGg  , hence, the name convolutional 

codes [2]. 

As in many other situations where 

convolutions appear it is convenient to express the 

sequences in some sort of transform. In 

information theory and coding theory [3], [4] it is 

common to use the delay operator D, the D-

transform. The information and code sequences 

becomes 
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They are related through the equation 

)()()( DGDuDv  , 

where 
m

mDGDGGDG  ...)( 10  

is the generator matrix. 

The set of polynomial matrices is a special 

case of the rational generator matrices. Hence, 

instead of having finite impulse response in the 

encoder, as for the polynomial case, we can allow 

periodically repeating infinite impulse responses. 

To make the formal definitions for this case it is 

easier to start in the D-domain.  

Let F 2((D)) denote the field of binary 

Laurent series. The element 
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contains at most finitely many negative 

powers of D. similarly, let F 2[D] denote the ring 

of binary polynomials.  

A polynomial 
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contains no negative powers of D and only 

finitely many positive.  

Given a pair of polynomials x(D), y(D) F 

2[D], where y(D)0, we can obtain the element 

x(D)/y(D) F 2((D)) by long division. All non-

zero ratios x(D)/y(D) are invertible, so they form 

the field of binary rational functions, F 2(D), 

which is a sub-field of F 2((D)). 

 

A rate R = k/n (binary) convolutional 

transducer over the field of rational functions F 

2(D) is a linear mapping  

))(())((: 22 DFDF nk   
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which can be represented as 

v(D)=u(D)G(D), 

where G(D) is a k X n transfer function 

matrix of rank k with entries in F 2(D) and v(D) is 

called the code sequence corresponding to the 

information sequence u(D).  

 

A rate R = k/n convolutional code C over F 2 

is the image set of a rate R = k/n convolutional 

transducer. We will only consider realizable 

(causal) transfer function matrices, which we call 

generator matrices. A transfer function matrix of a 

convolutional code is called a generator matrix if 

it is realizable (causal). 

It follows from the definitions that a rate R = 

k/n convolutional code C with the k X n generator 

matrix G(D) is the row space of G(D) over 

F((D)). Hence, it is the set of all code sequences 

generated by the convolutional generator matrix, 

G(D).   

A rate R = k/n convolutional encoder of a  

convolutional code with rate R = k/n generator 

matrix G(D) over F 2(D) is a realization by linear 

sequential circuits of G(D). 

 

 

2. Convolutional encoder simulation 
The Convolutional Encoder block encodes a 

sequence of binary input vectors to produce a 

sequence of binary output vectors. This block can 

process multiple symbols at a time. If the encoder 

takes k input bit streams (that is, can receive 2
k
 

possible input symbols), then this block's input 

vector length is L*k for some positive integer L. 

Similarly, if the encoder produces n output bit 

streams (that is, can produce 2
n
 possible output 

symbols), then this block's output vector length is 

L*n. The input can be a sample-based vector with 

L = 1, or a frame-based column vector with any 

positive integer for L. For a variable in the 

MATLAB workspace [5], [6] that contains the 

trellis structure, we put its name as the Trellis 

structure parameter. This way is preferable 

because it causes Simulink [5] to spend less time 

updating the diagram at the beginning of each 

simulation, compared to the usage in the next 

bulleted item. For specify the encoder using its 

constraint length, generator polynomials, and 

possibly feedback connection polynomials, we 

used a poly2trellis command within the Trellis 

structure field. For example, for an encoder with 

a constraint length of 7, code generator 

polynomials of 171 and 133 (in octal numbers), 



and a feedback connection of 171 (in octal), we 

have used the Trellis structure parameter to 

poly2trellis(7,[171 133],171).  

The encoder registers begin in the all-zeros 

state. We configured the encoder so that it resets 

its registers to the all-zeros state during the course 

of the simulation: The value None indicates that 

the encoder never resets; The value On each 

frame indicates that the encoder resets at the 

beginning of each frame, before processing the 

next frame of input data; The value On nonzero 

Rst input causes the block to have a second input 

port, labeled Rst. The signal at the Rst port is a 

scalar signal. When it is nonzero, the encoder 

resets before processing the data at the first input 

port.  

 

 

3. Convolutional decoder simulation 
3.1. Viterbi Decoder  

  The Viterbi Decoder block [7], [1] 

decodes input symbols to produce binary output 

symbols. This block can process several symbols 

at a time for faster performance. If the 

convolutional code uses an alphabet of 2
n
 possible 

symbols, then this block's input vector length is 

L*n for some positive integer L. Similarly, if the 

decoded data uses an alphabet of 2
k
 possible 

output symbols, then this block's output vector 

length is L*k. The integer L is the number of 

frames that the block processes in each step. The 

input can be either a sample-based vector with 

L = 1, or a frame-based column vector with any 

positive integer for L. 

The entries of the input vector are either 

bipolar, binary, or integer data, depending on the 

Decision type parameter: Unquantized  - Real 

numbers; Hard Decision - 0, 1;  Soft Decision - 

Integers between 0 and 2
k
-1, where k is the 

Number of soft decision bits parameter, with 0 

for most confident decision for logical zero and 

2
k
-1, most confident decision for logical one. 

Other values represent less confident decisions. 

If the input signal is frame-based, then the 

block has three possible methods for transitioning 

between successive frames. The Operation mode 

parameter controls which method the block uses: 

In Continuous mode, the block saves its internal 

state metric at the end of each frame, for use with 

the next frame. Each traceback path is treated 

independently. In Truncated mode, the block 

treats each frame independently. The traceback 

path starts at the state with the best metric and 

always ends in the all-zeros state. This mode is 

appropriate when the corresponding 

Convolutional Encoder block has its Reset 

parameter set to On each frame. In Terminated 

mode, the block treats each frame independently, 

and the traceback path always starts and ends in 

the all-zeros state. This mode is appropriate when 

the uncoded message signal (that is, the input to 

the corresponding Convolutional Encoder block) 

has enough zeros at the end of each frame to fill 

all memory registers of the encoder. If the encoder 

has k input streams and constraint length vector 

constr (using the polynomial description), then 

"enough" means k*max(constr-1). In the special 

case when the frame-based input signal contains 

only one symbol, the Continuous mode is most 

appropriate. 

The Traceback depth parameter, D, 

influences the decoding delay. The decoding 

delay is the number of zero symbols that precede 

the first decoded symbol in the output. If the input 

signal is sample-based, then the decoding delay 

consists of D zero symbols.  If the input signal is 

frame-based and the Operation mode parameter 

is set to Continuous, then the decoding delay 

consists of D zero symbols. If the Operation 

mode parameter is set to Truncated or 

Terminated, then there is no output delay and the 

Traceback depth parameter must be less than or 

equal to the number of symbols in each frame.  If 

the code rate is 1/2, then a typical Traceback 

depth value is about five times the constraint 

length of the code. 

The reset port is usable only when the 

Operation mode parameter is set to Continuous. 

Checking the Reset input check box causes the 

block to have an additional input port, labeled Rst. 

When the Rst input is nonzero, the decoder returns 

to its initial state by configuring its internal 

memory as follows: Sets the all-zeros state metric 

to zero; Sets all other state metrics to the 

maximum value;  Sets the traceback memory to 

zero; Using a reset port on this block is analogous 

to setting the Reset parameter in the 

Convolutional Encoder block to On nonzero Rst 

input. 

 

3.2. APP Decoder  

The APP Decoder block [8] performs a 

posteriori probability (APP) decoding of a 

convolutional code. The input L(u) represents the 

sequence of log-likelihoods of encoder input bits, 

while the input L(c) represents the sequence of 



log-likelihoods of code bits. The outputs L(u) and 

L(c) are updated versions of these sequences, 

based on information about the encoder. If the 

convolutional code uses an alphabet of 2
n
 possible 

symbols, then this block's L(c) vectors have length 

Q*n for some positive integer Q. Similarly, if the 

decoded data uses an alphabet of 2
k
 possible 

output symbols, then this block's L(u) vectors 

have length Q*k. The integer Q is the number of 

frames that the block processes in each step. 

The inputs can be either: Sample-based 

vectors having the same dimension and 

orientation, with Q = 1; Frame-based column 

vectors with any positive integer for Q. 

To define the convolutional encoder that 

produced the coded input, we have used the 

Trellis structure MATLAB parameter. We tested 

two ways: The name as the Trellis structure 

parameter, for a variable in the MATLAB 

workspace that contains the trellis structure. This 

way is preferable because it causes Simulink to 

spend less time updating the diagram at the 

beginning of each simulation, compared to the 

usage in the next bulleted item; For specify the 

encoder using its constraint length, generator 

polynomials, and possibly feedback connection 

polynomials, we used a poly2trellis command 

within the Trellis structure field. For example, 

for an encoder with a constraint length of 7, code 

generator polynomials of 171 and 133 (in octal 

numbers), and a feedback connection of 171 (in 

octal), we used the Trellis structure parameter to 

poly2trellis(7,[171 133],171. 

To indicate how the encoder treats the trellis 

at the beginning and end of each frame, it’s 

necessary to set the Termination method 

parameter to either Truncated or Terminated. 

The Truncated option indicates that the encoder 

resets to the all-zeros state at the beginning of 

each frame, while the Terminated option 

indicates that the encoder forces the trellis to end 

each frame in the all-zeros state.  

We can control part of the decoding 

algorithm using the Algorithm parameter. The 

True APP option implements a posteriori 

probability. To gain speed, both the Max* and 

Max options approximate expressions by other 

quantities. The Max option uses max{ai} as the 

approximation, while the Max* option uses 

max{ai} plus a correction term. The Max* option 

enables the Scaling bits parameter in the mask. 

This parameter is the number of bits by which the 

block scales the data it processes internally. We 

have used this parameter to avoid losing precision 

during the computations. It is especially 

appropriate for implementation uses fixed-point 

components.  

 

 

4. Conclusions 
In these work we have constructed and 

tested in Maple convolutional encoders and 

decoders of various types, rates, and memories. 

Convolutional codes are fundamentally different 

from other classes of codes, in that a continuous 

sequence of message bits is mapped into a 

continuous sequence of encoder output bits. It is 

well-known in the literature and practice that 

these codes achieve a larger coding gain than that 

with block coding with the same complexity. The 

encoder operating at a rate 1/n bits/symbol, may 

be viewed as a finite-state machine that consists 

of an M-stage shift register with prescribed 

connections to n modulo-2 adders, and a 

multiplexer that serializes the outputs of the 

adders. 
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